Proper Modeling of Integrated Vehicle Systems

Geoff Rideout

Graduate Student Research Assistant

Automated Modeling Laboratory
University of Michigan

Automotive Research Center
Modeling of Vehicle Driveline Systems for an Integrated Environment

Project team - Driveline Systems:

- Jeff Stein, Professor
- Geoff Rideout, Graduate Student
- Loucas Louca, Research Fellow
- Dan Grohnke, Senior Development Engineer
- Polat Sendur, Graduate Student

UM, UM, UM, NAVISTAR, UM
Outline

- Motivation for integrated simulation tool - VESIM
- Integrated simulation environment
- Subsystem model implementation tools
- Description of powertrain module models
- Simulation results
- Future work
Motivation

• Integrated Ground Vehicle Simulation:
 - Facilitates concurrent engineering of military, passenger and commercial vehicles
 - Enables rapid study of alternate vehicle configurations
 » system design and optimization studies
 • driveability, fuel economy, emissions, etc.

• Modular environment ensures long-term relevance of simulation tool
Goal: Integration of Variable Complexity Models

ENGINE

EMPIRICAL

SIMPLIFIED

THERMODYNAMIC

HIGH-FIDELITY

VEHICLE DYNAMICS

POINT-MASS

MULTI-BODY

Automotive Research Center

Modeling of Integrated Vehicle Powertrain Systems
Background and Current State-of-the-Art

- Integrated simulation packages have been developed to:
 - Study transient operation of engines and vehicles
 - Predict dynamic response
 - Assess alternate system configurations

- Existing software packages allow building-block model construction

- Models have been developed for each subsystem, but integration effort is fairly new

We have yet to fully tap the potential of such a tool.
Integrated Modeling Tools

MATLAB-SIMULINK

• Block diagram graphical user interface
 - Simulink block libraries
 - Matlab programming language
 - C or Fortran source code

• Common solver used for engine, driveline, vehicle
Integrated Modeling Tools

$20S_{IM}$

- Bond graph model graphical user interface
- Common formalism for different energy domains
 - Systematic generation of state equations
- Bond graph and block diagram elements can be integrated
- Generates source code for Matlab C-MEX files
MODULAR STRUCTURE

• flexibility in choosing vehicle configuration
Torque Converter

• 3 element torque converter (pump, turbine & stator)

• Static or dynamic model?

(J.C. WHITE/FORD MOTOR CO.)
Torque Converter Model

• **Static Model Methodology** (e.g., Salaani and Heydinger, 1998)

![Torque Converter Diagram]

-
 - Engine Speed
 - Torque Ratio
 - Speed Ratio
 - Capacity Factor
 - Engine Speed
 - Capacity Factor

- **Implementation**
 - 20SIM -> C code -> Matlab/Simulink
 - Direct block diagram entry to Matlab/Simulink
• **Modeling Strategies**
 - Input-output model based on experimental data
 - Physical component-level model
Input-Output Transmission Model

- Based on experimental measurement of input and output effective inertias, stiffnesses, and damping
- Implemented as discrete components (e.g. Bond Graph)
 - 20SIM -> C-MEX files -> Matlab/Simulink
- Incorporates losses
 - Gear inefficiency
 - Fluid pumping
Empirical blending functions are used for shifting.
Alternative Transmission Model

- Physical-Based Model (Cho and Hedrick, 1989)
- Model considers inertias of gears and compliances of shafts
- Clutches engage/disengage during shift event
 - Torque phase
 - Speed phase
- Model can switch between bond graphs for different phases
Shift Logic

• Decision to shift based on
 - Transmission output shaft speed
 - Throttle position

• Implementation
 - C-MEX function
 » Accepts inputs from transmission and driver
 » Outputs gear number, torque multiplication and speed reduction ratios
Differential/Driveshaft Models

- **Differentials**
 - Bond graph representations
 - Conventional bevel-gear
 - Worm-gear

- **Propshafts and Driveshafts**
 - Compliance, inertia, damping
 - Axle cooler churning losses

- **Implementation**
 - 20SIM -> C-MEX files
Vehicle Specifications

Engine

- V8 DI Diesel
- Turbocharged, Intercooled
- Rated Power: 210 HP @ 2400 rpm

Vehicle/Driveline

- GVWR: 7950 Kg
- 4 Speed Automatic Transmission
- Rear Wheel Drive - 4x2

NAVISTAR 4700 Series
• Vehicle launch performance validation
 - “0-60 mph” full throttle acceleration from idle
 - Engine and vehicle speed compared to experimental data

• Torque converter stall test validation
 - Compare torque converter stall speed with test data

• Shift quality parametric study
 - Shift duration nominally 0.8 seconds
 - Vary duration +/- 0.4 seconds
 - Compare vehicle forward jerk
Model Validation (0-60 MPH)

ENGINE SPEED [RPM]

VEHICLE SPEED [MPH]

Test
VESIM

TIME [SEC]
Torque Converter Stall Test

ENG. SPEED [RPM]

TIME [SEC]

Test
VESIM
- Consider trade-off between ride quality and:
 - Acceleration
 - Clutch wear
Summary

- An inventory of models for different powertrain components has been implemented.
- Driveline models have been integrated with engine and vehicle (VESIM).
- Models have been partially validated with test data.
- Potential utility of simulation tool has been explored through example design studies.
Conclusions

• Vehicle/engine integration of varying fidelity is possible

• Engine/vehicle interactions appear to be important to vehicle mobility design and evaluation

• Additional work on driveline models is necessary
Future Work

- Extend usefulness of VESIM as predictive design tool by expanding component model inventory
- Continue data collection effort for validation