Empowering Engineering Refinement

<table>
<thead>
<tr>
<th>Aerospace</th>
<th>Automotive Industries</th>
<th>Mechanical & Process Industries</th>
</tr>
</thead>
<tbody>
<tr>
<td>Acoustics, Motion, Structural Dynamics & Fatigue Engineering</td>
<td>NVH, Durability and Motion Engineering</td>
<td>Noise, Vibration & Fatigue Engineering</td>
</tr>
</tbody>
</table>

Optimizing tasks & creating process-centric solutions
Enabling a “Process-Centric” Approach...

Supporting engineering decisions for critical design attributes throughout the entire process
Empowering Engineering Refinement
Based on Test & Simulation

Forces From Test
FE Model
Synthesis
Test Model
Simulation Model

VIRTUAL REFINEMENT

Best of both worlds: loads, models, methodologies

ARC - May 1999
Engineering Refinement Process

Concept
- TARGET
- CONCEPT
- REFINE

Virtual Prototype
- DESIGN
- MODEL
- ANALYZE
- REFINE

Physical Prototype
- BUILD
- TEST
- ANALYZE
- REFINE

Engineering Refinement Process

 ARC - May 1999
Empowering Engineering Refinement

Best-of-Class Solutions for MTEST & MCAE

- Physical Prototype Testing
 - Mobile Testing
 - Acoustic testing
 - Structural Testing
 - Durability Lab Testing Simulation

- Virtual Prototype Simulation
 - Vibro-acoustic simulation
 - Fatigue simulation
 - Motion Simulation
 - Structural Integrity Simulation
LMS International - Leading by Innovation

The fastest growing provider of engineering solutions

Market leader in Physical Test

Technology leader in multi-disciplinary Virtual Prototyping
A Track Record of Growth, Profitability, and Business Transformation

- 500 people in 15 offices worldwide
- $100m revenues
- expanding by organic growth and acquisitions
- partnering with the best in the industry
Preferred Partner For
Leading Manufacturers Worldwide

<table>
<thead>
<tr>
<th>Company</th>
<th>Company</th>
<th>Company</th>
<th>Company</th>
</tr>
</thead>
<tbody>
<tr>
<td>AUDI</td>
<td>VOLKSWAGEN</td>
<td>GOODYEAR</td>
<td>DASA</td>
</tr>
<tr>
<td>BMW</td>
<td>VOLVO</td>
<td>HARRISON</td>
<td>DLR</td>
</tr>
<tr>
<td>DAIMLERCHRYSLER</td>
<td>ALLIED SIGNAL</td>
<td>LEAR SEATING</td>
<td>DORNIER</td>
</tr>
<tr>
<td>FIAT</td>
<td>ALLISON TRANSMISSION</td>
<td>LUCAS</td>
<td>EMBRAER</td>
</tr>
<tr>
<td>FORD</td>
<td>AMERICAN AXLE</td>
<td>MAGNETI MARELLI</td>
<td>ESA-ESTEC</td>
</tr>
<tr>
<td>GENERAL MOTORS</td>
<td>AP PARTS</td>
<td>MICHELIN</td>
<td>ESTEC</td>
</tr>
<tr>
<td>HARLEY DAVIDSON</td>
<td>ARVIN CHESWICK</td>
<td>MONROE</td>
<td>FORD AEROSPACE</td>
</tr>
<tr>
<td>HONDA</td>
<td>BENDIX</td>
<td>NAVISTAR</td>
<td>HARRIS CORPORATION</td>
</tr>
</tbody>
</table>
| HYUNDAI | BORG WARNER | PIRELLI | HUGHES AIRCRAFT-
| ISUZU | BOSCH | RIETER | IABG |
| JAGUAR | BRIDGESTONE | VALEO | LOCKHEED MARTIN |
| LOTUS | CALSONIC | WALKER | LORAL |
| MITSUBISHI | COLLINS & AIKMAN | ZF | NASA |
| NISSAN | CONTINENTAL | AERODYNE | NASDA |
| PORSCHE | DAYCO | AEROSPATIALE | NORTHROP |
| PSA | DELPHI | AGUSTA | ORBITAL SCIENCES CORP. |
| RENAULT | DONALDSON | ALENIA | PRATT & WHITNEY |
| ROVER | DUNLOP | BMW ROLES ROYCE | RAYTHEON |
| SAMSUNG MOTOR | EATON | BOEING | ROCKWELL ROCKETDYNE |
| SKODA | FIRESTONE | BRITISH AEROSPACE | SIKORSKY |
| SUBARU | GILLET | CASA | SNECMA |
| SUZUKI | GKN | CESSNA | TRW |
| TOYOTA | | | WESTLAND HELICOPTER |
Why Mechanical Simulation?

- Inexpensive vs. physical testing
- More versatile than testing
 - hazardous conditions
 - “what if” testing
- Visualize system performance
- Increase knowledge of system performance
- Integration with CAD/CAE enables collaborative engineering
- Improve product quality
- Shorten time to market

www.lmscadsi.com
Key Vehicle Applications

- Stability
- Performance
- Durability
DADS Consulting for Deere

Deere agricultural vehicles

- Enhanced tire model to simulate soil interaction
- Simulated new Deere rubber tracked system
- Modeled details of track lugs and soil deformation using custom consulting solution
Flexible Rear Axle Simulation
TACOM Truck Models

- Tacom has used DADS for nearly 16 years
- Standard for vendor simulation on proposed vehicle designs & remanufacture
- Recognized as simulation leader throughout the Army and other military sites
Fifth Wheel Lock Mechanism

- Complex contact events occur as the handle releases the 5th wheel coupler
- Predict force to open latch and how quickly it closes
DADS/Plant

Simulating Controlled Mechanisms
DADS/Plant

Integrated with Matlab, MATRIXx, EASY5

- Pass position and velocity of points on specific bodies from DADS/Plant to Matlab
- Forces and torques from Matlab act on DADS/Plant bodies
- Call DADS/Plant as a subroutine
- Numerical integration performed in Matlab
Tank Mounted Gun Barrel

- **Objective:** Design motor drivers to move gun barrel quickly, but with minimal vibration
- Gimbal assembly with flexible gun barrel modeled in DADS/Plant
- Flex modes imported from ANSYS
- Simulation performed in SIMULINK
- Compare rigid vs. flexible models
 - Animation
 - Plots: Torque on elevation axis
 - Torque on azimuth axis
DADS/Plant

Integrated with MATLAB

- DADS mechanical system coupled with MATLAB control system model
- Simulation performed in SIMULINK
- Photo-realistic animation of mechanical system motion
- Calculate/plot reaction loads
- Verify controller design
SYSNOISE
System for Computational Vibro-Acoustics
What is Acoustics?

Source
- vibrating body
- speaker

Propagation
- sound path & absorption
 - airborne
 - structure-borne
 - mixed

Receiver
- microphone
- ear
SYSNOISE/FEM Transient

- Extension of SYSNOISE/FEM Harmonic
 - to the time-domain
- Absorbing panels
- Vibrating panels (accelerations)
- Acoustic sources
- Calculation
 - Transient response
SYSNOISE/BEM & FEM Harmonic Coupling

- **Complement of SYSNOISE/BEM or FEM Harmonic**
 - see SYSNOISE/BEM or FEM for the fluid
 - acoustic BEM or FEM model is coupled to a structure

- **Structure**
 - modeled by finite elements
 - modal coordinates
 - physical coordinates
 - structural modal damping

- **Coupling**
 - weak or strong fluid-structure link

- **Possibility of random analysis**
 - random acoustic and mechanical excitations, diffuse field, ...
Multi-Domain Capabilities

- Acoustic FEM + Direct BEM
 - fluid-fluid link
 - forced frequency response
- Multiple Direct BEM
 - fluid-fluid link
 - forced frequency response