Powertrain System
Dynamic Model Development:
M1A1 Abrams Main Battle Tank

University of Wisconsin-Madison
Powertrain Control Research Lab - Engine Research Center

John J. Moskwa, PI
David E. Foster, co-PI
Gordon Wright, co-PI
Scott A. Munns
Zachary J. Rubin
Joseph W. Anthony
Wenbo Wang
Presentation Topics

- Description of the M1A1 Abrams main battle tank powertrain system hardware
- Modular M1A1 powertrain system models
 - Engine, torque converter, transmission, gearbox, planetaries, driveshafts, hydrostatic steering
 - Functionalities captured in the dynamic models
- Case studies: Using the dynamic powertrain models to understand system performance
 - Focus on the influence of grades & steering input
 - Description of tests conducted and results
- Summary and Conclusions
Overall vehicle
- Prime Contractor: General Dynamics (Land Syst.)
- Combat weight: 67.7 tons (61.4 metric tons)
- Power/weight ratio: 22 hp/ton
- 4 person crew; driver, commander, gunner, loader

Engine
- Textron-Lycoming AGT-1500 gas turbine
- 1500 hp @ 22,500 rpm (power turbine speed)
- High & low pressure compressors, turbines, and spools
- Recuperator, output power turbine and spool
M1A1 Abrams Powertrain System Hardware

Transmission Module
- 7.5:1 speed reduction into transmission module (22,500 rpm to 3,000 rpm, rated speed)
- Allison X1100-3B automatic transmission module
- X110-1C Hydrokinetic torque converter
- 4 forward speeds, 2 reverse speeds
- Hydrostatic steering unit; variable displacement, 9-piston radial hanging ring pump
- Hydraulic brakes at each drive sprocket
- Planetary gear reduction and final drive at each drive sprocket
AGT-1500 Gas Turbine Engine Thermodynamic Cycle

1. Intake System
2. LPC
3. HPC
4. Comb
5. Recuperator
6. HPT
7. LPT
8. PT
9. Load Torque
10. Gas Generator

University of Wisconsin - Powertrain Control Research Laboratory
M1A1 Abrams
Modular Powertrain System Models

- Mean-value modular engine model (AGT-1500)
 - Data from the torque-speed maps
- Full dynamic modular engine model (AGT-1500)
 - Low pressure spool rotational dynamics
 - High pressure spool rotational dynamics
 - Drive turbine dynamics
 - 5 compressor and turbine maps
 - Gas generator and recuperator
- Full dynamic drivetrain model
 - X1100-3B transmission module, torque converter
 - Hydrostatic steering pump/motor and gearing
 - Final drive planetary gear reductions
Partial Modular Format
for the AGT-1500
Gas Turbine
Dynamic Model

1. Packaged Engine
2. Gas Turbine Engine
3. Gas Generator
4. Compressors
5. Recuperator

University of Wisconsin - Powertrain Control Research Laboratory
1.头上rpm
1.头上

2.头上
2.头上

1.头上
1.头上

X110-1C
Torque Converter Model

X1110-3B Transmission
Shift Control Logic

University of Wisconsin - Powertrain Control Research Laboratory
Case studies to examine powertrain system and overall vehicle performance

- Slope and steering response in 3 case studies
 - 1. Response to slope changes w/o steering ($v_0 = 40$ mph)
 - 2. Response to steering w/o slope changes (vehicle launched from 0 mph)
 - 3. Combined slope and steering changes (vehicle launch)

- Vehicle speed control algorithm implemented
 - Driver inputs desired speed (used for demonstration)
 - Removes driver’s influence during comparative testing

- Hydrostatic steering pump control algorithm
 - Comparison w/ current configuration (driver has direct control of steering pump displacement)
8 Slope Scenarios

Scen._1
Scen._2
Scen._3
Scen._4
Scen._5
Scen._6
Scen._7
Scen._8

Time [seconds]

Percent Road Slope [%]
M1A1 Velocity with Varying Slope Input

University of Wisconsin - Powertrain Control Research Laboratory
Sinusoidal Driver Steering Input

- In the top graph, the Hydraulic Pump Displacement is depicted (in m³/°rad) over time (in seconds). The graph compares the performance with and without compensation. The 2-3 shift is indicated at around 3 seconds.

- In the bottom graph, the Hydraulic Pump Flow (in m³/sec) is shown over time. This graph also compares with and without compensation, showing a 1-2 shift around 2 seconds and a 2-3 shift around 3 seconds.
Sinusoidal Driver Steering Input

Solid lines—Left, Dashed lines—Right

Planetary Sun Relative Velocities [rpm]

-600 −400 −200 0 200 400 600

Time [seconds]

Vehicle and Track Speeds [mph]

10 15 20 25 30 35 40 45

Time [seconds]

Upshift understeer perturbation (eliminated w/ compensation)

University of Wisconsin - Powertrain Control Research Laboratory
Combined Steering & Slope Commands

Baseline

Combined loading

Time (seconds)

Steering command

% Road Slope

Baseline

Combined loading

University of Wisconsin - Powertrain Control Research Laboratory
Track Speeds & Transmission I/O Speeds

M1A1 steering maneuver

4-3 downshift

University of Wisconsin - Powertrain Control Research Laboratory
Summary and Conclusions: Case Studies

- Powertrain system dynamic response
 - Steering coupled to engine speed (upshift = understeer perturbation, downshift = oversteer)
 - Grade/slope changes predict shifting patterns and vehicle performance in uneven terrain

- Utility of M1A1 powertrain system simulation
 - Can be used to gain a deeper understanding of overall system vehicle performance
 - Optimize components, controls, and system for specific applications and duty cycles
 - battlefield environment, respond to enemy capability ...
 - More examples: environment, loading, thermal ...

University of Wisconsin - Powertrain Control Research Laboratory
Summary and Conclusions: Overall Models

- Dynamic models of the complete M1A1 Abrams powertrain system have been developed by the University of Wisconsin-Madison Quad. New attributes to be added.
- Powertrain system models can be used for optimization or overall system performance.
- Examples were presented showing how the component and system level performance can be simulated and analyzed.
- See - http://www.erc.wisc.edu/powertrain/