Methodologies for Design and Analysis of Heavy-Duty Truck Mobility

Jeff Stein, UM
Huei Peng
Dennis Assanis
Nestor Michelena
Steve Riley
Loucas Louca

Lee Han, UTN
Wei Chen, CU

Mongi Abidi, UTN
Raman Garimella, CU
Zoran Filipi, UM
Mathew Ma
Hyung Min Kim
Bo-Chiuan Chen
Polat Sendur
Dohoy Jung

ARC Conference
May 19, 1998
Ann Arbor, Michigan
Goals

• ARC Goal
 - To develop a flexible, agile simulation system composed of a hierarchy of models of varying resolution that can be tailored to meet a range of simulation objectives.

• This Case Study Goal
 - To demonstrate advances made in meeting the above goal by presenting results from ARC projects, across thrust areas, on the mobility performance of heavy duty trucks.
Specific Objectives

• To develop 2nd generation models and simulation tools for the design of a complete vehicle:
 - Powertrain and Vehicle Dynamics

• To demonstrate for the M916 truck:
 - Proper vehicle dynamics models for mobility studies
 - Active safety design: Rollover Warning
 - Design optimization: Rollover Performance
M916 Vehicle Specifications

- 21 rigid body DOF / 91 state variables
- 126,000 lbf GVW
 - M916A1 3-Axle Tractor (6x6)
 - M870A2 3-Axle Semitrailer
- Thermodynamic simulation with physically based sub-models
- DDC Series 60 engine
 - 475 HP@2100 rpm
 - Turbocharged, intercooled
Flexible Simulation Tool: ArcSim

1. Model Reduction

2. Equation Formulation

3. Model Integration Vehicle/Engine

4. Rollover Warning & Animation

5. Rollover Performance
1. Model Reduction

• Objective
 - Develop methods and tools for a systematic generation of vehicle models that minimize model complexity subject to accuracy constraints.
 - Apply modeling methods to the M916 truck.

• Participants:
 - University of Michigan
Methodology

• Model Reduction:
 - Find the Activity of each element, in a baseline model, based on power flow as a modeling metric.
 \[Activity = \int_0^T |Power(t)| \cdot dt \]
 - Reduce the model complexity based on Model Order Reduction Algorithm (MORA).

• Application:
 - Generate a hierarchy of models of the M916 truck suitable for mobility studies.
 - Scenario: Acceleration and braking on a flat wet road.
Element Importance

- Developed models:
 - Baseline 3D
 - Pitch Plane
 - Reduced Pitch Plane
Performance Predictions

48% Reduction -> Eliminate Yaw and Roll DOF
59% Reduction -> Eliminate axle vertical inertial forces
Conclusions

• Activity is a powerful model reduction metric.

• Reduced models of vehicles can be systematically generated.

• Reduced models may have sufficient accuracy at greatly reduced complexity.
2. Equation Formulation

• Objective:
 - To improve the numerical efficiency of Reduced Order Models.

• Problem:
 - Small masses / inertias acted upon by large forces / moments produce high frequency dynamics, often not of interest.
 - In the past, either a small time step or a stiff integrator was needed to solve the equations of motion.

• Participants:
 - University of Michigan
Methodology: Inertia Removal Strategy

- Use ODE formulation of equations of full model.
- Replace dynamics of small inertias with constraint equations:
 - Reduce system order.
- Solve constraint equations iteratively at each step.
- Preserve ODE nature of equations.
 - Use larger time step with simple integration methods (e.g. RK2).
- Eliminating high frequencies is local to the source:
 - Error tolerances: Easier and fewer to choose.
Example

Load leveler of the M916 tractor tandem suspension
Results: Removal of load leveler inertia

- Increase integration time step from 0.00025 sec to 0.002 sec.
- Decrease simulation time by a factor of 8.

With inertia:
At $I = I_0 = 0.136$ (kg m2), spectral radius = 93 Hz

No inertia:
spectral radius = 12 Hz

High Frequency
Conclusions

Vehicle Handling and Ride

Vehicle Durability
3. Model Integration - Vehicle/Engine

• Objective
 - Simulate vehicle acceleration on flat road using the high fidelity engine/powertrain system model coupled to reduced (pitch plane) multi-body vehicle dynamics model.
 - Investigate the effect of rough road profile on engine performance.

• Participants:
 - University of Michigan
 - University of Wisconsin
High Fidelity Ground Vehicle Simulation

PowerSim

Diesel Engine System

Driveline

Vehicle Dynamics

3D Multibody Dynamics Model
 Acceleration on Flat Smooth Road

Pitch Plane model runs 3 times faster than Baseline 3D model
Acceleration on Flat Rough Road

Fuel consumption is increased by 1.7%
Conclusions

• Model complexity can have a dramatic influence on simulation time and often without significantly affecting accuracy.

• Advanced fuel economy studies require the integration of vehicle and powertrain dynamics.
4. Rollover Warning & Animation

• Objective:
 - Develop a dynamic rollover prediction algorithm which indicates vehicle rollover threats so that preventative actions can be taken.

• Critical issues:
 - Accurate and fast (60 x real-time) model.
 - Metric to indicate rollover threat accurately under a wide variety of maneuvers.

• Participants:
 - University of Michigan: Rollover warning
 - University of Tennessee: Animation
Simplified roll/yaw models need to be constructed

Roll model

<table>
<thead>
<tr>
<th>Roll Plane Model</th>
<th>Rigid Vehicle</th>
<th>+ Compliant Tires</th>
<th>+ Compliant Suspensions</th>
<th>+ Compliant Fifth Wheel</th>
<th>ArcSim</th>
</tr>
</thead>
<tbody>
<tr>
<td>Number of States</td>
<td>0</td>
<td>2</td>
<td>4</td>
<td>8</td>
<td>91</td>
</tr>
</tbody>
</table>

Model Error (steady-state cornering)

Computation time

Model D = 200 x ArcSim = 70 x Real Time (200 MHz Pentium)
Time to Rollover (TTR): Rollover Threat Metric

Under current condition, the vehicle will rollover in ?? seconds.

The TTR is then fed to a Neural Network to get the NN-TTR.
Simulation Results Under Four Maneuvers

The NN was trained with datasets from all four categories:

- **Ramp steering**
 - Mild
 - Bad
- **Ramp entering**
- **Obstacle avoidance**
- **Worst-Case**

The mean TTR error (msec) for different categories is as follows:

- Mild: 5 msec
- Bad: 22 msec
- Worst Case: 30 msec
Conclusions

• A reduced ArcSim model is critical to the success of the rollover warning system.

• The Neural Network accurately predicts a uniform rollover threat “Countdown” under a wide variety of maneuvers.

• Animation is important to warning system evaluation.
5. Design Optimization for Rollover Performance

• Objective:
 - To integrate ArcSim models with design optimization techniques.
 - To implement worst-case and robust design concepts to achieve improved vehicle rollover performance under:
 » extreme maneuvers (worst-case design),
 » a wide range of maneuvers (robust design).

• Participants:
 - University of Michigan: Worst-case design
 - Clemson University: Robust design
Methodology for Worst-Case Design

• Design Objective:

\[
\begin{align*}
\min_{\text{vehicle parameters}} & \quad \int_{0}^{5} \text{roll angle}^2 \, dt \\
\max_{\text{maneuver parameters}} & \quad \text{Rollover Metric}
\end{align*}
\]

• Rollover Metric:

\[
\sqrt{\int_{0}^{5} \text{roll angle}^2 \, dt}
\]
Methodology for Robust Design

- Design Objective:

\[
\text{Max}_{\text{vehicle parameters}} \left(\frac{C - \text{Mean Rollover Metric}}{\text{Variance Rollover Metric}} \right)
\]

Vehicle

Maneuver (range)

ArcSim Surrogate

Rollover Metric (range)

Response Surface Model generated from ArcSim
Worst-Case Design Results

VEHICLE WORST-CASE DESIGN

EXTREME MANEUVER

Dev. from Nominal

-20% -15% -10% -5% 0% 5% 10% 15% 20%

Hitch height
Hitch roll stiffness
Dist. bw springs on Axle 1
Axle 2/3 Axle 4/5/6
Laden load for Axle 1
Axle 2/3 Axle 4/5/6
Spring stiffness Axle 1
Axle 2/3 Axle 4/5/6
Tire stiffness Axle 1
Axle 2/3 Axle 4/5/6
Steering start time
end time
level
Braking start time
end time
level
Worst-case rollover metric
Conclusions

• Both worst-case and robust design problems can be solved as optimization problems if design objectives (metrics) can be efficiently calculated (simulated).

• Simpler models would facilitate both design formulations by reducing simulation runtimes to:
 - evaluate worst-case rollover metric for worst-case design,
 - generate surrogate models used to evaluate mean and variance of rollover metric for robust design.

• Different design techniques can be integrated with ArcSim.
Conclusions

1. Model Reduction

2. Equation Formulation

3. Model Integration Vehicle/Engine

4. Rollover Warning & Animation

5. Rollover Performance
Detailed Technical Presentations
Room 107 EPB - Wednesday 9:00-12:00 am

• Reduced Order Mobility Models
 - Loucas Louca and Polat Sendur

• Efficient Equation Formulation of the M916
 - Steve Riley

• Worst Case Rollover
 - Huei Peng

• Vehicle Response Predictions for Active Safety Systems
 - Huei Peng and Lee Han

• Proper Tire Models
 - Ian Darnell

ArcSim Demo: Reception at North Campus Holiday Inn