Identification of Electrode Aging Mechanisms Using Mechanical Particle Model (MPM) for Lithium-Ion Batteries

Thrust Area 4: Advanced and Hybrid Powertrains

Anna Stefanopoulou* (PI) & Jason Siegel* (Co-PI), Peyman Mohtat* (PhD student), Yi Ding*, Matt Castanie*, and Aaron Knobloch*
*University of Michigan, TARDEC, GE Global Research

Problem Statement

Battery degradation is currently estimated based on capacity fade and resistance increase. We aim to estimate the degradation mechanisms by identifying each electrode capacity and stoichiometry.

Approach: Fusion of voltage and strain measurements via an electrochemical and electromechanical model of the battery electrodes.

Electrochemical (Voltage):

The stoichiometric operating window of electrodes:

- \(x \): moles of Lithium in anode: \(Li_xC_6 \) with initial \(x \in (x_0, x_{100}) \)
- \(y \): moles of Lithium in cathode: \(Li_yFePO_4 \) with initial \(y \in (y_0, y_{100}) \)

The capacity of individual electrodes:
- Anode: \(C_{a0} (Ah) \)
- Cathode: \(C_{c0} (Ah) \)

At open circuit the terminal voltage can be used to identify each electrode capacity and operating stoichiometry:

Analysis using voltage-only measurements shows weak observability:

\[
S = \begin{bmatrix}
\alpha_1 & 0 & \beta_1 & \alpha_2 & 0 & \beta_2 & \ldots & \alpha_n & 0 & \beta_n \\
\alpha_1 & \beta_1 & \alpha_2 & 0 & \beta_2 & \ldots & \alpha_n & 0 & \beta_n & \ldots
\end{bmatrix}
\]

where the slopes of the overpotentials are \(\alpha_i = \frac{\partial \psi_0}{\partial x_i}, \beta_i = \frac{\partial \psi_0}{\partial y_i} \)

As an example, the error in estimating \(y_0 \) starting with a 5% initial error shows a non-observable problem when the voltage measurements are taken in the mid-SOC range, where the overpotentials are flat.

Electromechanical (Strain):

Material expansion due to Li-ion intercalation has a distinct behavior associated with material phase changes:

- Cathode active material is made of metal oxides that expands linearly with Li-ion concentration \(\epsilon_s(x) \)
- Anode active material is made of graphite that expands piece-wise linearly with Li-ion concentration based on its phase changes \(\epsilon_s(x) \)

Assuming rigidity for other components the total strain can be written as:

\[
\epsilon_T = \epsilon_p + \epsilon_s = \epsilon_p + \epsilon_n(x) + \epsilon_n(x) + C_n \epsilon_n^2 + \epsilon_n^2
\]

where \(\epsilon_p, \epsilon_n, \epsilon_n^2 \) and \(\epsilon_n^2 \) are the thickness of anode, cathode, and cell at the discharge state, respectively.

Diffusion Driven Dynamics:

A Mechanical Particle Model (MPM) to model voltage and strain concurrently. Based on Single Particle Model (SPM) with a moving boundary.

Analysis using voltage-only measurements shows weak observability:

\[
S = \begin{bmatrix}
\alpha_1 & 0 & \beta_1 & \alpha_2 & 0 & \beta_2 & \ldots & \alpha_n & 0 & \beta_n \\
\alpha_1 & \beta_1 & \alpha_2 & 0 & \beta_2 & \ldots & \alpha_n & 0 & \beta_n & \ldots
\end{bmatrix}
\]

where the slopes of the overpotentials are \(\alpha_i = \frac{\partial \psi_0}{\partial x_i}, \beta_i = \frac{\partial \psi_0}{\partial y_i} \)

As an example, the error in estimating \(y_0 \) starting with a 5% initial error shows a non-observable problem when the voltage measurements are taken in the mid-SOC range, where the overpotentials are flat.

[1] http://epg.eng.ox.ac.uk/content/degradation